AAC 2019 Paper Abstract

Close

Paper TuAT3.4

Jung, Daniel (Linköping University)

Engine Fault Diagnosis Combining Model-Based Residuals and Data-Driven Classifiers

Scheduled for presentation during the Regular Session "Internal Combustion Engine Diagnosis" (TuAT3), Tuesday, June 25, 2019, 11:30−11:50, Chamerolles

9th IFAC International Symposium on Advances in Automotive Control, June 23-27, 2019, Orléans, France

This information is tentative and subject to change. Compiled on April 20, 2024

Keywords Model-based Diagnostics, Diagnosis, Security and Dependability

Abstract

Design of fault diagnosis systems is complicated by limited training data and inaccuracies in physical-based models when designing fault classifiers. A hybrid fault diagnosis approach is proposed using model-based residuals as input to a set of data-driven fault classifiers. As a case study, sensor data from an internal combustion engine test bed is used where faults have been injected into the system and a physical-based mathematical model of the air flow through the engine is available. First, a feature selection algorithm is applied to find a minimal set of residuals that is able to separate the different fault modes. Then, two different fault classification approaches are discussed, Random Forests and one-class Support Vector Machines. A set of one-class Support Vector Machines is used to model data from each fault mode separately. The case study illustrates an advantage of using one-class classifiers, which makes it possible to detect unknown faults by identifying samples not belonging to any known fault mode.

 

Technical Content Copyright © IFAC. All rights reserved.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-04-20  01:30:27 PST   Terms of use