AAC 2022 Paper Abstract

Close

Paper TuAT4.1

Gao, Liming (Pennsylvania State University), Beal, Craig E. (Bucknell University), Mitrovich, Juliette (Pennsylvania State University), Brennan, Sean (Pennsylvania State University)

Vehicle Model Predictive Trajectory Tracking Control with Curvature and Friction Preview

Scheduled for presentation during the Regular Session "Vehicle Dynamics and Control" (TuAT4), Tuesday, August 30, 2022, 10:00−10:20, Ballroom

10th IFAC International Symposium on Advances in Automotive Control, August 28-31, 2022, Columbus, Ohio, USA

This information is tentative and subject to change. Compiled on April 25, 2024

Keywords Vehicle dynamics, control and state estimation, Control, guidance and navigation of autonomous vehicles, Intelligent transportation systems

Abstract

Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keeping performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately.

 

Technical Content Copyright © IFAC. All rights reserved.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-04-25  04:06:53 PST   Terms of use