Paper WeAT2.2
Eric, Guiffo Kaigom (Frankfurt University of Applied Sciences)
Deep Generative and Discriminative Digital Twin Endowed with Variational Autoencoder for Unsupervised Predictive Thermal Condition Monitoring of Physical Robots in Industry 6.0 and Society 6.0
Scheduled for presentation during the Regular Session "AI-based Robot Control I" (WeAT2), Wednesday, July 16, 2025,
10:20−10:40, Room 106
Joint 10th IFAC Symposium on Mechatronic Systems and 14th Symposium on Robotics, July 15-18, 2025, Paris, France
This information is tentative and subject to change. Compiled on July 16, 2025
|
|
Keywords Service robots
Abstract
Robots are unrelentingly used to achieve operational efficiency in Industry 4.0 along with symbiotic and sustainable assistance for the work-force in Industry 5.0. As resilience, robustness, and well-being are required in anti-fragile manufacturing and human-centric societal tasks, an autonomous anticipation and adaption to thermal saturation and burns due to motors overheating become instrumental for human safety and robot availability. Robots are thereby expected to self-sustain their performance and deliver user experience, in addition to communicating their capability to other agents in advance to ensure fully automated thermally feasible tasks, and prolong their lifetime without human intervention. However, the traditional robot shutdown, when facing an imminent thermal saturation, inhibits productivity in factories and comfort in the society, while cooling strategies are hard to implement after the robot acquisition. In this work, smart digital twins endowed with generative AI, i.e., variational autoencoders, are leveraged to manage thermally anomalous and generate uncritical robot states. The notion of thermal difficulty is derived from the reconstruction error of variational autoencoders. A robot can use this score to predict, anticipate, and share the thermal feasibility of desired motion profiles to meet requirements from emerging applications in Industry 6.0 and Society 6.0.
|
|